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Abstract. Rainwater can collect in a lens-shaped region within the rock of a tropical island, and may be separated
from the underlying salt water by a sharp interface. This paper presents a nonlinear theory for determining the
shape of this interface. The island is assumed to be saturated with rain, and provision is made for the outflow of
rain-water through the sides of the island. The effect of a bore well on the shape of the interface is investigated,
and the problem is solved using a spectral method. An integral-equation method is also presented for the case
when the island has infinite width.
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1. Introduction

The extraction of fluid from reservoirs, ponds or horizontal aquifers is an important problem
in fluid mechanics, and is of considerable practical interest. Much theoretical work has been
undertaken on problems of this type, over the past decade or so, and significant gains in
understanding have been made.

Withdrawal of a fluid from a reservoir is perhaps the simplest situation to describe, al-
though the apparent simplicity of the problem description belies the difficulty experienced in
solving the problem and interpreting the results. Imagine a very large body of water, such as
a reservoir, in which all the fluid is at rest. There is a free surface bounding the fluid from
above, but since the fluid is at rest, this surface is simply horizontal. Now suppose that fluid is
withdrawn from the reservoir, through some sort of extraction outlet situated within the fluid.
The free surface deforms in response to this disturbance, and a velocity flow field is set up in
the fluid. A key task is to find the new shape assumed by the disturbed free surface. Reservoir
problems are usually modelled assuming potential flow of an inviscid fluid with a Bernoulli
boundary condition and a kinematic condition at the free surface.

If the reservoir is stratified so that it contains water in two horizontal layers, then an
interface will be present between the upper (lighter) fluid and the lower (heavier) one. If
now fluid is selectively withdrawn from one of the layers, the interface deforms in response
to this disturbance. It is important to find the new shape of this interface, and in particular to
determine whether situations can arise in which the interface itself is drawn into the extraction
outlet. In that case, the withdrawal process would not just involve fluid from the one layer in
which the outlet was located; instead, some sort of break-through event would occur, so that
fluid from both layers would be extracted.
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It follows that a practical design criterion in reservoir engineering is to find the maximum
pumping rate permissible, before break-through occurs and both fluids begin to be extracted.
This is the situation in reservoirs where a highly saline layer of fluid has formed beneath the
upper fresh layer. In that case, extraction of the fresh water for town use cannot involve the
lower salty fluid. A similar consideration occurs in the management of cooling ponds.

Although reservoir withdrawal problems are simple to formulate mathematically, it is
nevertheless known that at least three different types of solution behaviour are possible, de-
pending upon the extraction pumping rate. If the extraction occurred through a long horizontal
perforated pipe, the fluid velocity field would be largely independent of the coordinate in the
direction along the pipe. In that case, the flow could be regarded as two-dimensional.

For these two-dimensional flows, Tuck and Vanden-Broeck [1] showed that the system of
governing equations permits two different solutions, the first of which occurs at low pumping
rate, and involves a weakly disturbed interface with a stagnation point located immediately
above the extraction pipe (which is present in the lower fluid layer). This solution type was
studied in more detail by Hocking and Forbes [2], who demonstrated numerically that there
is a maximum pumping rate, beyond which steady-state solutions of this type are apparently
not possible. Those authors were not able to identify a physical cause for this limitation. In
subsequent work, Forbes and Hocking [3] suggested that the maximum pumping rate might be
a consequence of a mathematical fold singularity in the solution, associated with the presence
of multiple steady solutions.

The second solution type identified by Tuck and Vanden-Broeck [1] is a steady situation in
which the interface is drawn vertically downwards into a cusp. This second flow type occurs
at one isolated value of the pumping rate only, and is mathematically unrelated to the first
solution type that has a stagnation point on the interface. The pumping rate at which this
solution occurs is significantly higher than the maximum rate for the first solution type, and
so there is a window of pumping rates in which steady flows appear not to be possible.

The isolated cusped solution of Tuck and Vanden-Broeck [1] was explained by Hocking
[4]. He showed that the formation of a downward vertical cusp at the fluid interface, at the
unique value of the pumping rate, represents the incipient break-through event; for larger
pumping rates, both the lower and the upper fluid would be drawn directly into the extraction
sink, along with the interface itself. This is then the third steady solution type possible for this
reservoir problem.

There has also been a significant amount of work in the past decade to extend the results
of Tuck and Vanden-Broeck [1] and Hocking [4] to the case of three-dimensional withdrawal
flow into an isolated extraction outlet. Forbes and Hocking [5] considered an axisymmetric
flow problem involving fluid withdrawal through a point sink, using this mathematical sin-
gularity to represent an actual outlet. They found solutions with a stagnation point at the
free surface, similar to the corresponding two-dimensional situation discussed by Tuck and
Vanden-Broeck [1] and Hocking and Forbes [2]. There is again a maximum pumping rate
beyond which steady solutions do not exist, although in this three-dimensional problem there
is a clear physical cause for this maximum, associated with the formation of a secondary
stagnation line at the surface and the onset of wave breaking. Unlike the two-dimensional
flow case, however, the three-dimensional solutions so far show no evidence of cusped surface
shapes similar to those discovered by Tuck and Vanden-Broeck [1]. Additionally, solutions
analogous to those of Hocking [4], that involve both the upper and lower fluids being drawn
down into the extraction sink, have not been found for three-dimensional axisymmetric flow.
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Recent work of Forbes and Hocking [6] suggests that such steady solutions may perhaps not
even exist.

By contrast, when the extraction point sink is located above the interface between the
two fluids, it is known that a cusp may be produced at the interface in axisymmetric three-
dimensional flow, as the heavier lower fluid is drawn upwards toward the sink. For axisymmet-
ric withdrawal involving slow viscous (Stokes) flow of a two-fluid system, Lister [7] computed
interface profiles up to and including super-critical extraction rates, for which both fluids were
withdrawn. This model was chosen for its relevance to the geological situation of an erupting
volcano. Similarly, the axisymmetric deformation of a gas-liquid interface by a point sink
located above the interface, in the gas layer, has been studied by Singler and Geer [8].

The present paper is concerned with extraction of a fluid from a porous medium. This situ-
ation is related mathematically to the reservoir models discussed above, since it also involves
potential flow. In the present case, however, the condition at the interface is different. A clas-
sical text that discusses groundwater applications is the book by Muskat [9] and subsequent
works on flow in porous media include books by Bear [10] and Dagan [11], for example. In
situations where a horizontal layer of oil is present in a porous rock, and is supported below by
a large volume of water also trapped in the rock, a horizontal interface may exist between the
water and the oil. When an extraction point is introduced into the oil and pumping begins, the
interface is drawn upward towards the withdrawal region, forming a ‘water cone’. If pumping
is too severe, break-through can again occur and water from the underlying layer is extracted
along with the oil.

Axisymmetric withdrawal solutions for the water coning problem were computed by Lu-
cas, Blake and Kucera [12], using an integral equation approach. They obtained steady-state
solutions, valid up to pumping strengths at which the interface forms an upward vertical cusp.
For pumping rates greater than this limiting value, the flow might become unsteady, or perhaps
involve the simultaneous withdrawal of both fluids (similar to the situation described by Lister
[7] and Hocking [4]). Lucas and Kucera [13] later extended this work to allow for more general
geometries in an oil extraction field. A similar, two-dimensional, water coning situation was
studied by Zhang et al. [14], who also found that steady solutions are ultimately limited at a
pumping rate at which the water-oil interface forms an upward vertical cusp. Their solution
technique did not rely on numerical schemes, but instead involved a fully analytical approach
based on a hodograph transformation. Their results give confidence in the predictions of
numerical solution methods for these problems.

A numerical scheme similar to that of Lucas and Kucera [13] was used by Forbes [15], to
design flow fields for the efficient extraction of low-grade underground ore by mineral leach-
ing. In this application, the flow type is analogous to the third type of solution for withdrawal
from reservoirs found by Hocking [4], in which both upper and lower fluids are extracted
simultaneously in a supercritical flow.

It is often desired to extract fresh groundwater from porous rock for domestic use. The
fresh water may occur in a horizontal layer within the rock, above a lower layer of salty water.
Approximate solutions for the interface between fresh and salty water in coastal aquifers in
the two-dimensional case are given by Bear [10, pp. 559–563] and Dagan [11, pp. 216–239],
and show that the interface in this zone is a portion of an inverse parabola. A similar feature
is seen for the more complicated axisymmetric flow discussed in the present paper, near the
coastal region. When the upper fresh water is withdrawn, the interface between the fresh and
salty fluid layers is also drawn upwards, and forms a vertical cone precisely as in the case of
oil recovery.
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Ma et al. [16] present a model of salt-water up-coning caused by extraction from an aquifer.
The book by Holzbecher [17, Chapter 12] gives an approximate numerical solution for two-
dimensional unsteady up-coning withdrawal. In that calculation, a steady-state was sought as
the long time limit of the numerical results, but was clearly difficult to obtain. One purpose
of the present paper is to seek such steady solutions directly, for a three-dimensional flow.
The formation of a vertical cone in withdrawal from a two-phase aquifer has likewise been
considered by Huyakorn et al. [18], using a finite-element method to solve the unsteady field
equations. Their method shows a limiting profile with a vertical cusp, for axi-symmetric geo-
metry. For larger pumping rates, they apparently computed unsteady extraction of both the
water in the upper layer and the salty lower fluid. Bower et al. [19] have given an approximate
analytical method for determining the critical pumping rate in a confined aquifer, using an
assumed form for the interface shape.

Fresh water resources must be managed carefully by communities living on small ocean-
bound islands, as has been discussed by Langevin et al. [20]. The fresh water is usually located
in a lens that floats on the underlying sea-water within the island. The presence of artificially
constructed canals in the island and the process of extraction of the water for drinking purposes
may both disturb the shape of the fresh-water lens.

It is of practical importance to know the precise location of the fresh-water salt-water
interface within the island. An example of an experimental survey technique for determining
this information is given by Ruppel et al. [21]. There is a simple classical formula for determ-
ining the interface height, known as the Ghyben-Herzberg equation, and it may be derived
from texts such as [22, p. 402] and [23, p. 175] for example. The formula assumes a sharp
interface between the two different fluids, and gives an approximation to the interface height
away from coastal regions, based on a simple hydrostatic pressure balance. A comprehensive
review of the Ghyben-Herzberg approach is given by Essaid [24], and a finite-difference model
is developed and applied to actual aquifers in the Hawaiian Islands. Fresh-water extraction
from the Ghyben-Herzberg fresh water lens is considered using a simplified one-dimensional
theory by Nutbrown [25], and a more elaborate two-dimensional anisotropic model is given
by Padilla and Cruz-Sanjulián [26], who solved their system of equations with a finite-element
method.

In the present paper, an idealized model of a tropical island is considered, in which the
island is modelled as a circular cylinder with a flat top. There is a lens of fresh water within the
island, floating above the sea water, and a sharp interface separates the two regions. Extraction
occurs at the island centre-line, at some specified height above sea level, and the extraction
well is represented by an equivalent mathematical point sink. Re-charge of the fresh-water
aquifer occurs by rainfall, which is assumed to be so plentiful that the surface of the aquifer
coincides with the top of the island; excess rainfall runs away to the ocean, in a very short
time scale. The system of governing equations for this situation is outlined in Section 2.

It has been found that determining the flow within the island and the location of the
interface is generally a mathematically ill-conditioned problem; see [27, p. 309]. This fact
has been commented on previously by Wikramaratna and Wood [28], for problems of this
type, and is therefore not unexpected. These authors observe that spurious oscillations in
the numerical results are often produced, and similar difficulties have been encountered here
also. In fact, a range of different island shapes and numerical methods has been tried for
this problem, and the present paper makes use of two such numerical schemes. The first is a
spectral Galerkin method for the idealized island geometry considered here, and is presented
in Section 3. This scheme is capable of great accuracy, but is usually ill-conditioned in cases
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of physical interest, giving rise to spurious oscillations near the coastal zone and the extraction
region. A regularization strategy is used to control these oscillations.

A second numerical method is outlined in Section 5, and makes use of a boundary-integral
approach in a region closer to the extraction zone at the island’s centre. An analysis in Sec-
tion 4 confirms the results that are presented in Section 6. Some concluding remarks and
observations are given in Section 7.

2. The governing equations

The problem is first described in dimensional variables. The island is taken to have a circular
cylindrical shape, of radius A. It is assumed to have vertical sides, for simplicity, and to rise
a height H above the sea level. A Cartesian coordinate system is located with the origin at
sea level and the z-axis pointing vertically up the central axis of the cylindrical island. The
horizontal top surface of the island, at height z = H , is kept continually moist by frequent
rain showers, and fluid within the rock of the island is drawn downwards, in the negative z-
direction, by the constant acceleration g of gravity. An extraction well is present down the
z-axis, and withdraws fluid from a point on the z-axis at height L above the sea level. At that
point, there is an effective point sink of total withdrawal strength Qs .

Let us denote the upper fresh water layer as “fluid 1”, and the lower salty layer as “fluid 2”.
According to Darcy’s law, the seepage velocity vector qi in each fluid layer i = 1, 2 is related
to the pressure pi in each layer by the formula

qi = −K∇(pi + ρigz); (2.1)

see [11, p. 92]. Here, the constant K (m3 s/kg) represents the total permeability of the rock
(permeability divided by fluid viscosity), and ρi are the densities of the fluids in each layer,
i = 1, 2. It is assumed that the rock is fully saturated, so that the incompressibility conditions

∇ � qi = 0 (2.2)

hold, in each fluid layer i = 1, 2.
Non-dimensional variables are now introduced, by scaling all lengths relative to the island

height H , and velocity relative to the quantity ρ1gK, which is the characteristic seepage speed
of water (in layer 1) due to gravity. The pressures pi are referenced to the term ρ1gH . The
solutions to this problem may now be seen to depend on the four non-dimensional parameter
groups

α = A

H
, D = ρ2

ρ1
, λ = L

H
, µ = Qs

ρ1gH 2
.

The quantity α is the dimensionless radius of the island, which in these new dimensionless
variables now has height 1 above sea level, and D denotes the ratio of densities of salt water
to fresh water, so that D > 1. The extraction sink is at dimensionless height λ above sea
level, within the island, and its extraction rate is µ. A sketch of the geometry illustrating these
non-dimensional variables is given in Figure 1.

In dimensionless variables, Darcy’s law (2.1) is now written

qi = −∇�i, i = 1, 2, (2.3)
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Figure 1. A schematic diagram of the non-
dimensionalized flow problem, for an island of finite
radius α. (The interface is taken from an actual solu-
tion with radius α = 25, density ratio D = 4, sink
height λ = 0·1 and strength µ = 1·2).

Figure 2. The volume V1 containing the upper fresh-
water layer, and its boundary surfaces ∂V1 used in
the derivation of the integral equation in Section 5.

in which the total pressure head in each fluid is defined to be

�1 = p1 + z, �2 = p2 + Dz. (2.4)

It follows from Equations (2.3) that the pressures �i act as velocity potentials in each layer,
i = 1, 2. In the lower (salty) layer 2, it is evident that �2 = 0 on the sea surface z = 0 external
to the island, and so for a steady-state solution, it must be the case that �2 = 0 throughout the
entire lower layer. Thus there is no movement of salty water in the steady-state situation, so
that q2 = 0. Equations need therefore only be developed for the fluid in the fresh water lens
(layer 1).

By virtue of Darcy’s law (2.3) and the incompressibility condition (2.2), it follows that the
total pressure head �1 satisfies Laplace’s equation in cylindrical polar coordinates (r, θ, z)

∇2�1 = 1

r

∂

∂r

(
r
∂�1

∂r

)
+ ∂2�1

∂z2
= 0 (2.5)

in fresh water layer 1. The axisymmetric nature of the solution has been taken into account in
Equation (2.5). Symmetry requires that the condition

∂�1/∂r = 0 on r = 0 (2.6)

be satisfied on the axis of the cylindrical island.
The top of the island is subject to sufficient rainfall to keep the entire region above the

interface always saturated. Excess rainwater simply runs away to the ocean, on a time scale
much shorter than typical times associated with the movement of groundwater. Thus the fluid
at the top of the island must be at atmospheric pressure, and so the fluid pressure p1 there
must be zero. Thus

�1 = 1 on z = 1. (2.7)



Salt-water up-coning during extraction of fresh water from a tropical island 75

Similarly, because the sides of the island are saturated and exposed to the atmosphere, the
pressure there is likewise zero, so that

�1 = z on r = α, 0 < z < 1. (2.8)

Near the point sink, the potential �1 has the behaviour

�1 → − µ

4π
√

r2 + (z − λ)2
as (r, z) → (0, λ). (2.9)

The fresh water lens (layer 1) is bounded below by an interfacial surface z = ζ(r), that
separates it from the stationary salt-water layer underneath. There is no component of flow
normal to this interface, and so the kinematic condition there becomes

∂�1

∂z
= ∂�1

∂r

dζ

dr
on z = ζ(r) (2.10)

There is also a dynamical condition to be satisfied on this interface, since fluid pressures there
must balance. Therefore, p1 = p2 across the interface, and so Equations (2.4), and the fact
that �2 = 0 everywhere in the salty layer, yield the condition

�1 = −(D − 1)z on z = ζ(r) (2.11)

The solution to the problem of flow within the fresh water lens is determined by finding a
potential �1 and an interface shape z = ζ(r) that satisfy the system of Equations (2.5)–(2.11).
To this system must be added the auxiliary condition

ζ(α) = 0, (2.12)

which expresses the fact that the interface rises to the sea level at the edge of the island r = α.

3. Spectral Galerkin method for island of finite width

In this section, a spectral method is presented for the solution of the problem in Section
2, in which the island has finite width α. A similar, simpler scheme is discussed for two-
dimensional problems in the book by Holzbecher [17, p. 199], although the present method
is designed for axisymmetric flow in three-dimensional geometry. Nevertheless, it will be
seen that the problem is ill-conditioned, and this fact has been noted by other researchers
such as Wikramaratna and Wood [28]. Ill-conditioning refers to the fact that small changes in
flow parameters can cause large changes in the solution, and happens when the mathematical
problem is nearly singular. Physically, this occurs here when the density ratio D is close to
unity, so that very small errors will lead to large changes in the location of the interface.
Accordingly, a regularization scheme is needed, to stabilize the results.

To begin, suppose that the point sink at (r, z) = (0, λ) is removed from the mathematical
problem; that is, set the sink strength µ = 0 in Equation (2.9). Then it is possible to write down
at once a formal solution to Laplace’s equation (2.5), that satisfies the symmetry condition
(2.6), the top condition (2.7) and the side condition (2.8). In dimensionless variables, this
solution is

�
(1)

1 (r, z) = z +
∞∑

n=1

CnJ0

(
j0,n

r

α

)
sinh

(
j0,n

1 − z

α

)
. (3.1)
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This result (3.1) has been obtained in the usual way by means of separation of variables. The
symbol J0 denotes the Bessel function of the first kind, of zeroth order, as may be found in
[29, Chapter 9] for example, and j0,n refers to its n-th zero. The real constants Cn are as yet
unknown.

To the solution (3.1), it is now necessary to add a function that accounts for the presence
of the sink at (r, z) = (0, λ). Thus we seek a function of the form

�
(2)

1 (r, z) = − µ

4π
√

r2 + (z − λ)2
+ P(r, z;λ) (3.2)

that satisfies Laplace’s equation (2.5), the sink condition (2.9) and the symmetry requirement
(2.6). It is also required to satisfy a homogeneous equivalent of the side-wall condition (2.8),
namely

�
(2)
1 = 0 on r = α.

The function �
(2)

1 in Equation (3.2) will not obey a corresponding homogeneous condition on
the top of the island, at z = 1, and this additional constraint must be imposed later.

The equations obeyed by the quantity P(r, z;λ) in the expression (3.2) are solved using
Fourier transforms. The calculation is straightforward, if lengthy, and the final result is

�
(2)
1 (r, z) = − µ

4π
√

r2 + (z − λ)2
+ µ

2π2

∫ ∞

0

I0(ωr)

I0(ωα)
K0(ωα) cos

(
ω(z − λ)

)
dω. (3.3)

The functions I0 and K0 in this expression (3.3) are the modified Bessel functions of the first
and second kinds, respectively, of order zero; these functions may be found in [29, p. 374].

It is also necessary to add an image term to the potential, so as to satisfy the homogeneous
Dirichlet condition at the top of the island (corresponding to Equation (2.7)). Physically, this
corresponds to an image source being located at the point (r, z) = (0, 2 − λ). The additional
function is thus

�
(3)

1 (r, z) = µ

4π
√

r2 + (z−2+λ)2
− µ

2π2

∫ ∞

0

I0(ωr)

I0(ωα)
K0(ωα) cos

(
ω(z−2+λ)

)
dω. (3.4)

Laplace’s equation (2.5) is linear, and so its total solution may be constructed by superpos-
ition of the three functions in Equations (3.1), (3.3) and (3.4). The final result is

�1(r, z) = z + µ

4π

[
1√

r2 + (z − 2 + λ)2
− 1√

r2 + (z − λ)2

]

− µ

π2

∫ ∞

0

I0(ωr)

I0(ωα)
K0(ωα) sin

(
ω(z − 1)

)
sin

(
ω(1 − λ)

)
dω

+
∞∑

n=1

CnJ0

(
j0,n

r

α

)
sinh

(
j0,n

1 − z

α

)
. (3.5)

It may now be verified directly that the solution (3.5) indeed satisfies Laplace’s equation (2.5)
and the boundary conditions (2.6)–(2.9).

It remains to satisfy the two conditions (2.10) and (2.11) on the unknown interface location
z = ζ(r), which is likewise represented in the spectral form

ζ(r) =
∞∑

n=1

BnJ0

(
j0,n

r

α

)
. (3.6)
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This expression (3.6) also has the advantage that it satisfies the auxiliary condition (2.12)
identically.

A Galerkin method is now used to satisfy the remaining boundary conditions (2.10) and
(2.11), based on the representations (3.5) and (3.6) for the unknown potential and interface
location, respectively.

A vector of unknowns u of length 2N is created from the first N coefficients in each
spectral representation; thus

u = [
B1, B2, . . . , BN ;C1, C2, . . . , CN

]T
. (3.7)

An initial estimate is made for the coefficients in the vector (3.7), and on this basis, the inter-
face location ζ(r) can be computed directly from Equation (3.6). Its derivative ζ ′(r) can also
be computed by direct differentiation of the expression (3.6). Similarly, the surface potential
�1(r, ζ ) and the two velocity components u1 = −∂�1/∂r and w1 = −∂�1/∂z at the interface
may be obtained directly from Equation (3.5) (and Darcy’s law (2.3)).

The estimate of the coefficients in the vector (3.7) of unknowns is updated iteratively, by
requiring the error vector

E = [
E1, E2, . . . , EN ;EN+1, EN+2, . . . , E2N

]T
(3.8)

to be zero. Its elements are obtained as Hankel transforms of the two interface conditions
(2.10) and (2.11), and take the forms

Ek =
∫ α

0
rJ0

(
j0,k

r

α

)[
�1(r, ζ ) + (D − 1)ζ

]
dr,

EN+k =
∫ α

0
rJ0

(
j0,k

r

α

)[
w1(r, ζ ) − u1(r, ζ )ζ ′

]
dr, k = 1, 2, . . . , N. (3.9)

These error terms (3.9) make optimum use of the orthogonality relations for Bessel functions;
see [29, p. 485, formula 11.4.5], and indeed, if the problem were a linear one, the use of (3.9)
would lead at once to formulae for the unknown coefficients in the vector (3.7). Since the
problem is nonlinear, however, iteration is required.

The integrals in the error expressions (3.9) must be evaluated numerically, and this has
been done using the composite trapezoidal rule evaluated at mesh points

rk = (k − 1)
α

P − 1
for k = 1, 2, . . . , P . (3.10)

Because this is a full Galerkin method, there is no relationship between the number of coeffi-
cients N and the number of grid points P used in the numerical method.

This scheme works well for larger values of the density ratio D > 2, and extensive res-
ults have been produced in this parameter range. However, these are generally unrealistically
large values of D. For the fresh-water salt-water interface, in particular, density ratios in the
interval 1 < D < 1·05 are typically to be expected; see, for example, [17, p. 21]. This fact
introduces an additional difficulty, since it is observed that the mathematical problem becomes
ill-conditioned in the steady case, as D → 1, for the physical reason that the interface location
varies greatly with small perturbations, for D ≈ 1. Consequently, a regularization scheme is
needed, and we choose in this section to minimize the total curvature κT of the interface,
which may be represented in the form

κT =
�
z=ζ

[∇2ζ
]2

dA =
∫ 2π

0

∫ α

0

[
1

r

d

dr

(
r

dζ

dr

)]2

r dr dθ.
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After use of the series (3.6) and results from the theory of Bessel functions (see [29, p. 485,
formula 11.4.5]), we obtain

κT = π

α2

∞∑
n=1

B2
n

(
j0,n

)4
J 2

1

(
j0,n

)
. (3.11)

To minimize this expression, it is simply required to take

dκT

dBk

= 2π

α2
Bk

(
j0,k

)4
J 2

1

(
j0,k

) = 0. (3.12)

Thus the regularized method combines Equation (3.12) with the first of the equations in the
system (3.9), to give

Ek =
∫ α

0
rJ0

(
j0,k

r

α

)[
�1(r, ζ ) + (D − 1)ζ

]
dr + ε1

2π

α2
Bk

(
j0,k

)4
J 2

1

(
j0,k

)
,

EN+k =
∫ α

0
rJ0

(
j0,k

r

α

)[
w1(r, ζ ) − u1(r, ζ )ζ ′

]
dr k = 1, 2, . . . , N. (3.13)

A damped Newton’s method algorithm is used to update the vector of unknowns (3.7) by
forcing the error vector (3.8) to zero; its elements are given in Equation (3.13). Convergence
usually occurs within five to ten iterations. It is necessary to experiment with the regularization
parameter ε1 in (3.13),to find a value large enough to ensure well-conditioning of the method,
but still small enough for the original system (3.9) to be represented accurately. Further details
may be found in the book by Delves and Mohamed [27, p. 309].

4. Analysis of the solution

Far away from the coastal region or the withdrawal point at the centre of the island, it is
possible to estimate the interface location from the simple formula

ζ(r) ≈ − 1

D − 1
. (4.1)

Equation (4.1) is known as the Ghyben-Herzberg formula, and may be found in the books
by Bouwer [22, p. 402] and Raudkivi and Callander [23, p. 175], for example. It assumes
that there is no fluid motion in either the fresh or the salt water layer, and thus that the fresh
water floats in hydrostatic balance above the salt water. The result follows as a trivial solution
from Equations (2.3) and (2.7), since if there is no fluid motion in the fresh water layer, then
�1 must be a constant with the value 1. The dynamical condition (2.11) at the interface then
gives Equation (4.1). A detailed discussion of the history and validity of the Ghyben-Herzberg
relation (4.1) is given by Holzbecher [17, Section 11.2].

It is possible to derive some simple yet useful results concerning the flow along the inter-
face, on the basis of an analysis of the exact conditions (2.10) and (2.11). These results can be
summarized in the following theorem:

THEOREM 1. Along the interface z = ζ(r), the fluid velocity vector always has a component
directed upwards. Fluid moves back towards the centre if the interface slopes downward, and
radially out from the centre if the interface slopes upward. The interface is horizontal at a
stagnation point.
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Proof. This result follows from the dynamic interface condition (2.11) written in the form

�1
(
r, ζ(r)

) = −(D − 1)ζ(r).

The derivative of this equation with respect to the radial coordinate r yields

∂�1

∂r
(r, ζ ) + ∂�1

∂z
(r, ζ )

dζ

dr
= −(D − 1)

dζ

dr
. (4.2)

The kinematic condition (2.10) is used to eliminate the derivative ∂�1/∂z in Equation (4.2),
and velocity components are introduced from Darcy’s law (2.3). The result is

u1(r, ζ ) = (D − 1)ζ ′

1 + (ζ ′)2
w1(r, ζ ) = (D − 1)(ζ ′)2

1 + (ζ ′)2
. (4.3)

It follows from Equation (4.3) that w1 ≥ 0, and so the vertical component of the fluid is
always non-negative. Thus the fluid velocity vector always has an upward component. From
(4.3), it is also the case that u1 > 0 if ζ ′ > 0, and that u1 < 0 if ζ ′ < 0. Thus the fluid
flows radially outward (parallel to the interface) if the interface slopes upward (ζ ′ > 0), or
else flows radially inward if the slope is negative (ζ ′ < 0). At a stagnation point, where both
velocity components in Equation (4.3) are zero, it must be the case that ζ ′ = 0, so that the
interface is horizontal there. This concludes the proof. �

The results of this theorem enable reasonably detailed qualitative descriptions of the flow
within the fresh-water lens to be made. In the absence of the extraction sink (µ = 0), the
interface will be horizontal at the centre r = 0, but then will rise monotonically until it meets
the sea water at the height ζ = 0 at the island edge r = α, from Equation (2.12). In fact, for
an island of large width α, the interface will be almost flat over a large portion near the centre
of the island, at the height given by the Ghyben-Herzberg formula (4.1).

For non-zero extraction strength, µ �= 0, the above theorem shows that the interface must
form a stagnation point at some non-zero radius rs within the island. Over the interval 0 < r <

rs the slope of the interface will be negative, and so the fluid will be drawn backwards up the
interface, toward the extraction sink. Beyond this radius, in the interval rs < r < α, the slope
of the interface will be positive, and so the fresh water will move outward along the interface
and escape away from the island. (This is possible in this steady-state problem because there
is continual recharge at the top of the island, as expressed by Equation (2.7)). Furthermore,
there will be a stagnation streamline, starting at some point at the top of the island, z = 1, and
connecting to the stagnation point (rs, ζ(rs)) on the interface. This streamline will divide the
flow region into an inner portion that is ultimately drawn into the extraction sink, and an outer
region that eventually flows out of the island through the sides.

5. Near-field solution for island of great width

The problem as posed in Sections 2 and 3, for an island of finite radius α, is ill-conditioned for
D ≈ 1. This is also exacerbated by the fact that, over much of the island, the interface z = ζ(r)

is nearly flat, with elevation given by the Ghyben-Herzberg formula (4.1), but rises abruptly
to the level ζ = 0 in Equation (2.12) at the edge r = α. The numerical difficulties associated
with the coastal zone near r = α may be avoided by allowing α → ∞, and focussing instead
on the near-field region about r = 0. This is equivalent to considering an island of infinite
lateral extent.
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The total pressure �1 again satisfies Laplace’s equation (2.5) and Darcy’s law (2.3). The
symmetry condition (2.6) holds at the axis r = 0, and the top of the island at z = 1 remains in
contact with the open air, so that the condition (2.7) is still obeyed there. Again, the limiting
behaviour (2.9) applies near the sink at the point (r, z) = (0, λ). At the interface z = ζ(r),
there is the kinematic requirement expressed by Equation (2.10) and the dynamical condition
(2.11). However, the edge condition (2.12) is now replaced by the Ghyben-Herzberg law

ζ(r) → − 1

D − 1
as r → ∞. (5.1)

This new problem is amenable to solution using a boundary-integral method, particularly
as the source of ill-conditioning in the problem has been greatly reduced by the use of the
condition (5.1). Suppose that a fixed point Q is defined on the unknown interface z = ζ , and
a moveable point P is on one of the surfaces of the fresh water in region 1, including the
interface itself. By Green’s second identity, it then follows that

�
∂V1

(
�1(P )

∂G

∂nP

− G
∂�1(P )

∂nP

)
dSP = 0, (5.2)

since both the potential �1 and the Green function G(P,Q) satisfy Laplace’s equation in the
volume V1 occupied by the fresh water in upper layer 1.

The boundary ∂V1 of volume V1 consists of the upper surface z = 1, a cylindrical surface of
infinite radius in the region −1/(D − 1) < z < 1, and the interfacial surface z = ζ punctured
by a small circular disk of radius ε about the point Q. There is also a hemispherical surface
SQ, of radius ε, that is centred at point Q and excludes it from the volume V1. In addition, the
sink point (r, θ) = (0, λ) is likewise excluded from volume V1 by the small spherical surface
Sλ centred at this point. A sketch of volume V1 and its boundary surfaces is given in Figure 2.

The Green function G in Equation (5.2) is now chosen to be

G(P,Q) = 1√
r2
P + r2

Q − 2rP rQ cos(θP − θQ) + (zP − zQ)2

− 1√
r2
P + r2

Q − 2rP rQ cos(θP − θQ) + (zP + zQ − 2)2
. (5.3)

This function has the property that it vanishes on the top surface z = 1, and becomes singular
as P → Q.

The contribution to the integral in Equation (5.2) from each of the component surfaces that
make up the boundary ∂V1 is now assessed, and it may be shown that the total pressure head
�1 along the interface satisfies the integral equation

2π�1(Q) +
�
z=ζ

�1(P )
∂G

∂nP

dSP = −µ

[
1√

r2
Q + (λ − ζQ)2

− 1√
r2
Q + (λ + ζQ − 2)2

]

−
�
z=1

∂G

∂nP

dSP , (5.4)

in which G(P,Q) is the Green function in Equation (5.3).
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The integral on the left-hand side of Equation (5.4) is strongly singular as P → Q, since it
involves the normal derivative of the Green function in Equation (5.3), at the interface z = ζ .
It is advantageous to remove the singularity from the integrand of this term by subtraction,
using the identity�

z=ζ

�1(P )
∂G

∂nP

dSP =
�
z=ζ

[
�1(P ) − �1(Q)

] ∂G

∂nP

dSP + �1(Q)
�
z=ζ

∂G

∂nP

dSP . (5.5)

It is possible to express the last integral on the right-hand side (evaluated over the unknown
interface location) in terms of an integral taken over the top surface z = 1, using Gauss’s
theorem�

∂V1

∂G

∂nP

dSP = 0,

and assessing the contributions made by each of the surfaces that make up the boundary ∂V1

shown in Figure 2. When the result is combined with the expression (5.5), the singular integral
is now seen to take the form�

z=ζ

�1(P )
∂G

∂nP

dSP =
�
z=ζ

[
�1(P ) − �1(Q)

] ∂G

∂nP

dSP

+ �1(Q)

[
−2π −

�
z=1

∂G

∂zP

dSP

]
. (5.6)

This result (5.6) is now substituted in the integral equation (5.4), to give the de-singularized
expression

(
1 − �1(Q)

) �
z=1

∂G

∂zP

dSP +
�
z=ζ

[
�1(P ) − �1(Q)

] ∂G

∂nP

dSP

= −µ

[
1√

r2
Q + (λ − ζQ)2

− 1√
r2
Q + (λ + ζQ − 2)2

]
. (5.7)

The integral in the first term on the left-hand side of Equation (5.7) can in fact be evaluated
in closed form, to give�

z=1

∂G

∂zP

dSP = −4π. (5.8)

This result is discussed further in the Appendix. The integral equation for determining the
pressure head �1 along the unknown interface therefore takes the form

−4π
(
1 − �1(Q)

) +
�
z=ζ

[
�1(P ) − �1(Q)

] ∂G

∂nP

dSP

+ µ

[
1√

r2
Q + (λ − ζQ)2

− 1√
r2
Q + (λ + ζQ − 2)2

]
= 0. (5.9)

The interface profile z = ζ(r) and the potential function �1(r) are both axisymmetric
functions, and this allows one of the integrations (in the azimuthal coordinate θ) to be per-
formed explicitly, in the double-integral term in Equation (5.9). The required transformations
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are given in the paper by Forbes and Hocking [5] and will not be repeated here. After some
algebra, the integral equation (5.9) may be expressed in the final form∫ ∞

0

[
�1(P ) − �1(Q)

]
K(a2, b, c2, d) drP −

∫ ∞

0

[
�1(P ) − �1(Q)

]
K(a1, b, c1, d) drP

+ µ

[
1√

r2
Q + (λ − ζQ)2

− 1√
r2
Q + (λ + ζQ − 2)2

]
− 4π

(
1 − �1(Q)

) = 0. (5.10)

The kernel in this integral equation is defined to be

K(a, b, c, d) = rp

∫ 2π

0

a − b cos θ

[c − d cos θ]3/2
dθ (5.11)

and the six auxiliary functions in Equation (5.10) are

a1 = rP ζ ′
P − (ζP − ζQ), a2 = rP ζ ′

P − (ζP + ζQ − 2), b = rQζ ′
P ,

c1 = r2
P + r2

Q + (ζP − ζQ)2, c2 = r2
P + r2

Q + (ζP + ζQ − 2)2, d = 2rP rQ.

Forbes and Hocking [5] have shown that the kernel in Equation (5.11) can be expressed
in terms of complete elliptic integrals K and E, of the first and second kind respectively,
according to the formula

K(a, b, c, d) = 2√
c + d

[
ζ ′
P K

( 2d

c + d

) + (2arP − ζ ′
P c

c − d

)
E

( 2d

c + d

)]
. (5.12)

Expressions somewhat similar to Equation (5.12) are also given in [30, Chapter 6]. The com-
plete elliptic integrals K and E are straightforward to evaluate numerically, and expressions
for doing so are given by Liggett and Liu, based on the formulae in [29, p. 591].

The numerical solution of the integral equation (5.10), subject to the interfacial surface
condition (2.11) and the far-field condition (5.1), is now accomplished by a Newton method
approach similar to that outlined in Section 3. A grid of N points is placed along the interface,
at locations

rk = (k − 1)�r, k = 1, 2, . . . , N

and a vector of unknowns u of length N − 1 is created from interface elevations at all mesh
points except the last. This vector is therefore

u = [
ζ1, ζ2, . . . , ζN−1

]T
. (5.13)

At the last point downstream, the interface elevation is taken to be ζN = −1/(D − 1), so
as to satisfy condition (5.1). The derivatives ζ ′

k , k = 1, 2, . . . , N are computed from the
vector (5.13) of unknowns using Lagrangian five-point differentiation formulae, and the total
pressure �k is computed at each mesh point using Equation (2.11).

The integral equation (5.10) is evaluated at the N − 1 half-grid points

rk+1/2 = 1

2

(
rk + rk+1

)
, k = 1, 2, . . . , N − 1. (5.14)
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At these points, the interface height is estimated using interpolation, according to the simple
formula

ζk+1/2 = 1

2

(
ζk + ζk+1

)

and the potential �k+1/2 at these half-mesh points is then calculated directly from Equa-
tion (2.11). As in Section 3, an error vector E is created, having length N − 1, and its
components are the integral equation (5.10) evaluated at the points in Equation (5.14). When
trapezoidal-rule quadrature is used to approximate the integrals, the components of the error
vector are therefore determined to be

Ek = �r

N∑
j=1

wj

(
�j − �k+1/2

)
K(a2, b, c2, d) − �r

N∑
j=1

wj

(
�j − �k+1/2

)
K(a1, b, c1, d)

+ µ

[
1√

r2
k+1/2 + (λ − ζk+1/2)

2
− 1√

r2
k+1/2 + (λ + ζk+1/2 − 2)2

]

− 4π
(
1 − �k+1/2

)
, k = 1, 2, . . . , N − 1. (5.15)

In this expression, the quantities wj are the weights appropriate for trapezoidal-rule integ-
ration. They have the values wj = 1/2 if j = 1, N and wj = 1 if 2 � j � N −
1.

Newton’s method is used to update the vector of unknowns in Equation (5.13) iteratively,
by driving to zero the error vector, with components given in Equation (5.15). The method
generally converges quickly, with four or five iterations needed to produce a final solution.

The numerical method for solving the integral equation (5.10) outlined above is ill-
conditioned for D ≈ 1, for the reasons outlined in Section 3. Accordingly, it is useful to
add a regularization term to the error components in Equation (5.15). One measure of the total
deflection of the interface is the term�

z=ζ

[√
1 + |∇ζ |2 − 1

]
dA = 2π

∫ ∞

0

[√
1 + ζ 2

r − 1
]
r dr

and the calculus of variations indicates that this deflection is minimized by the Euler equation

d

dr

(
rζr√

1 + ζ 2
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)
= 0.

Thus the term

ε1

[
ζ ′
k+1/2√

1 + (ζ ′
k+1/2)

2
+ rk+1/2ζ

′′
k+1/2

[1 + (ζ ′
k+1/2)

2]3/2

]
(5.16)

is added to the components of the error vector, given in Equation (5.15). This modification
is capable of reducing the oscillations in the interface profile that are typical of the errors
produced by ill-conditioning. The regularization parameter ε1 in Equation (5.16) must again
be determined by numerical experimentation.
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Figure 3. A comparison of the numerical solution for the interfacial surface, obtained with the full spectral solution
(dashed line, for island radius α = 1000), and the integral equation technique (solid line) valid in the near field.
The density ratio is D = 1·05, and the sink height and strength are respectively λ = 0·1 and µ = 400.

6. Presentation of results

The spectral solution technique of Section 3 and the integral equation approach of Section 5
(valid closer to the island’s centre) have both been run for a wide variety of parameter values.
Convergence has usually been found to be good, in the sense that the numerical results are
insensitive to numerical parameters such as grid spacing. Nevertheless, this steady problem
becomes ill-conditioned as D → 1, which is the case of most interest; see [17, p. 21]. This
is associated with grid-scale oscillations in the numerical results. These may be controlled
in the numerical solution by the regularization methods introduced in Sections 3 and 5, and
experimentation suggests that appropriate values of the regularization parameter ε1 are of the
order of 1. When the island is of finite radius α, the abrupt rise in the interface elevation in the
coastal zone, from the Ghyben-Herzberg depth (4.1) to zero, as indicated in Equation (2.12),
can also cause spurious oscillations in the interface location. These are related to the Gibbs
phenomenon in the Fourier-Bessel series representations (3.5) and (3.6). These oscillations
are likewise mostly suppressed by the regularization strategy discussed above.

In Figure 3, the interface is presented for an island of radius α = 1000, with an extrac-
tion point at λ = 0·1 (which is slightly higher than the external sea-water level). The sink
extraction rate parameter is µ = 400 and the density ratio of fresh to salt water is D = 1·05.
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The interface is drawn with a dashed line, and over most of the island, is flat at the Ghyben-
Herzberg depth (4.1). Near the extraction point at the centre of the island, the interface rises
rather sharply, as is to be expected. At the edge of the island, near r = α, a dip may be seen
in the interface profile. This is, in fact, a spurious feature related to the oscillations caused by
the Gibbs phenomenon. When the regularization parameter ε1 in Equation (3.13) is reduced, a
sequence of oscillations appears in this coastal zone, and the dip evident in Figure 3 is merely
the first trough in this pattern. However, the value ε1 = 1 of the regularization parameter
used here is just sufficient to suppress all oscillations except the first. Beyond the numerical
dip, the interface rises to the sea-water height at the edge of the island, in accordance with
the condition (2.12). This solution was computed with N = 201 coefficients and P = 801
numerical grid points along the interface.

Also shown on Figure 3 is the near-field solution for the same parameter values, computed
with the integral-equation technique discussed in Section 5. This is drawn with a solid line.
For the most part, the agreement with the spectral solution is good, although the near-field
solution rises higher at the extraction location r = 0. The regularization process applied to the
spectral method tends to damp the interface close to the extraction zone, and this is evident in
Figure 3.

The spectral solution method in Section 3 permits the fluid velocity vector components
u1 and w1 within the island to be calculated directly, by straightforward differentiation of the
potential �1 in Equation (3.5). It is found that over much of the island the velocity vector is
nearly zero, except near the sink at (0, λ) and the waterline at (α, 0) when fluid speeds can be
large. Consequently it is difficult to visualize the velocity vector field in a meaningful way.

It is therefore more instructive to compute the Stokes stream function 1(r, z), from the
two velocity components u1 and w1 in the radial and vertical directions, and plot streamlines.
These have the property that they are everywhere parallel to the fluid velocity vector, and so
provide an excellent tool for the visualization of the flow field. The Stokes stream function 1

is obtained from the relations

u1 = ∂1

∂z
and w1 = −1

r

∂

∂r

(
r1

)
,

which after some algebra give the expression
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. (6.1a)

In this formula, the function J1 is a Bessel function of the first kind of order 1, and the symbols
Iν and Kν denote modified Bessel functions, as in Section 3. It follows from a careful analysis
of Equation (6.1a) that

lim
r→0

1(r, z) = 0, (6.1b)

except at the sink point (r, z) = (0, λ) where it is undefined.
The stream function 1 is evaluated from Equations (6.1) at a grid of numerical points

within the island. Contours are then drawn for this function, and this at once yields the
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Figure 4. Streamlines computed using the spectral solution method, for an island of radius α = 1000 with density
ratio D = 1·05, sink height λ = 0·1 and strength µ = 600. The thicker line towards the bottom of the picture is
the interface between the fresh and salty water.

streamlines for fluid flow within the island. An example is shown in Figure 4, for density ratio
D = 1·05, extraction point λ = 0·1 and sink strength parameter µ = 600, computed for an
island of radius α = 1000. Here, the streamlines are drawn using equally-spaced increments
in 1. The thicker line near the bottom of Figure 4 is the interface z = ζ(r).

Over much of the island’s interior, the stream function in Equation (6.1a) is almost zero,
and the fluid seepage velocity components are very small. For this reason, streamlines are
not evident over much of the interior region in Figure 4. Fluid seepage speed is greatest near
the centre of the island, as might be expected on purely geometrical grounds, and this is
reflected by the clustering of streamlines near r = 0. It is also apparent from Figure 4 that the
streamlines near the centre r = 0 first descend from the top surface z = 1 of the island and
then curve back upwards toward the extraction point at (r, z) = (0, λ). This is as would be
expected on physical grounds, and is also consistent with the theorem in Section 4, in which
Equations (4.3) show how the fluid velocity at the interface near r = 0 must be directed
upwards and back toward the centre.

At the edge r = α of the island, streamlines likewise move downwards from the top surface
z = 1, and ultimately move outwards through the side wall. This reflects the fact that the fresh
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Figure 5. Four different interface profiles, for the case α = 1000, D = 1·05 and λ = 0·1, for the four extraction
sink strengths µ = 200, 400, 600 and 761.

water enters the top of the island, soaks down under the effect of gravity and finally seeps
out through the porous rock at the island’s edge. Some minor evidence of oscillations in the
streamlines is evident near the extraction zone and the coastal zone at the edge of the island,
but this is a small error associated with Gibbs’s phenomenon.

From the discussion in Section 4, there must be a stagnation zone on the interface at some
non-zero radius rs and from Figure 4, it is evident that this occurs very approximately at
rs ≈ 200. There must be some streamline, starting at the top of the island and connecting
to the stagnation point (rs, ζ(rs)), that divides the flow in Figure 4 into two regions. The
inner region is ultimately drawn into the extraction sink at (r, z) = (0, λ) and the outer flow
ultimately exits through the side wall r = α of the island.

To conclude this presentation of results, four interface profiles are displayed in Figure 5,
for this steady-state solution. The island radius is α = 1000 and the density ratio is again
D = 1·05. The solutions shown are for the four different values of the sink strength µ = 200,
400, 600 and 761, and the biggest of these represents the largest extraction rate µ for which
the solution technique of Section 3 could yield a steady solution. Each interface profile is
roughly horizontal at the Ghyben-Herzberg depth (4.1) over much of the island, but each rises
to a maximum at r = 0. Near the coastal zone r = α, the interfaces rise abruptly to the sea
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level z = 0, although there is a numerically-generated dip in the interface near the island’s
edge, that is related to the Gibbs’s phenomenon, as discussed above.

The numerical scheme in Section 3 does not yield a solution for µ > 761, and a similar
result is obtained from the near-field solutions described in Section 5. No solutions have been
obtained for which the interface is drawn right up into the extraction point at z = λ, and
so it remains uncertain as to whether such steady configurations are possible. In the analog-
ous ‘water coning’ problem in the extraction of oil from a horizontal layer beneath which
a water table is present, the steady two-dimensional solutions of Zhang et al. [14] and the
corresponding three-dimensional solutions obtained by Lucas and Kucera [13] also produced
a limiting steady interface profile with an upward vertical cusp below the extraction sink, and
it is possible that the same situation may occur here also.

7. Discussion and conclusion

The shape of the interface between an upper fresh water layer and a stationary lower layer
of salt water in a tropical island has been studied in this paper. Steady-state solutions (inde-
pendent of time) have been sought, and the effect of withdrawing fluid from the upper layer of
fresh water has been investigated. It is assumed that the fresh water layer is recharged through
rainfall at the top of the island, and that the rainfall is so plentiful that the top of the fresh
water aquifer coincides with the top of the island. The excess rainfall that cannot percolate
down into the island simply runs off into the ocean, and does so on a time scale much shorter
than typical time scales associated with groundwater movement.

Over much of the island, the interface is found to be flat, at a height given by the classical
Ghyben-Herzberg relation (which simply expresses a hydrostatic balance between upper and
lower stationary layers of fluid). This is largely a result of the fact that the island width is large
by comparison with the Ghyben-Herzberg depth in Equation (4.1), and indeed this ratio is
infinite for the results obtained with the methods of Section 5. The interface rises rapidly
to the sea-surface level z = 0 at the edge of the island r = α, which is in accordance
with approximate theories presented by Bear [10, pp. 559–563] for example, which predict
that the interface has the form of an inverse parabola. For islands of large width, there is an
approximate de-coupling of the withdrawal region near r = 0 from the coastal effects near
r = α, as is evident from the streamline pattern in Figure 4.

Near the extraction region in the centre of the island, the interface is drawn upwards to-
wards the extraction point. For sufficiently large pumping rate, the steady solutions obtained
numerically eventually fail, and so it remains unclear what physically occurs at larger pumping
rates. One possibility is that there is a limiting steady solution with a vertical cusp formed at
some maximum height that is nevertheless below the extraction point. Such solutions were
found in a related problem by Lucas and Kucera [13]. In that case, the flow for larger pumping
rates would become unsteady, and the interface would be drawn intermittently into the extrac-
tion well, so giving bursts during which break-through would occur and both fluids would be
withdrawn simultaneously. Alternatively, it is possible that steady solutions are possible, for
which both fluids are withdrawn simultaneously and the interface passes into the extraction
point. Solutions of this form have been found in related problems by Lister [7], Hocking
[4] and Forbes [15]. The present numerical schemes are not able to resolve this question
directly, particularly as the regularization process necessary for their stability tends to smooth
the interface at the extraction zone. This question therefore awaits further research.
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A difficulty with the solution methods presented here is that they are found to be ill-
conditioned as the density ratio D becomes close to 1, which is the situation occurring in
practice. Numerically, this becomes evident from a study of the Jacobian matrix in Newton’s
method, which is found to have a high condition number, and also from the presence of grid-
scale oscillations in the results, which become more pronounced as more grid points are used.
This problem is well documented in groundwater literature, and the paper by Wikramaratna
and Wood [28], for example, discusses this in some detail. In the present paper, the problem
has been overcome to a large extent by the careful use of a Tikhonov regularization strategy,
although this can introduce undesirable smoothing precisely in regions of most interest, such
as the extraction zone.

In principle, this difficulty with ill-conditioning is a consequence of the fact that we have
sought steady-state solutions that are independent of time. Nevertheless, we have argued in
this paper that the mathematical ill-conditioning of the results reflects physical reality, and
is a consequence of the very small difference in density between the upper fresh water and
the lower salty layer. It follows, therefore, that comparable difficulties will be encountered
with solution methods that advance the flow forward in time. This is indeed the case, and
the numerical oscillations encountered here in the steady solution, related to the Gibbs phe-
nomenon, have a counterpart in unsteady solution techniques, where numerical overshoot of
the steady-state configuration is observed [17]. It has likewise been observed that, in practice,
it can take 10 to 20 years for an aquifer to adjust to the steady-state height predicted by the
Ghyben-Herzberg relation (see [17, Section 11.2]), and this is the physical manifestation of
the ill-conditioning reported here.

In this paper, the extra complexity associated with an upper free surface for the fresh-
water layer has been avoided by assuming that rainfall is so plentiful that the entire island
is saturated, and the groundwater surface occurs at the top of the island. In many practical
situations this will not be the case, however, and a free surface will be present above the
fresh water, in addition to the interface beneath it. The same numerical difficulties have been
encountered for that problem also, and will be discussed in a future article.

Appendix – Evaluation of integral across top of island

When the integral on the left-hand side of Equation (5.8) is written out in full, making use of
the definition of the Green function in Equation (5.3), it may be seen that

�
z=1

∂G

∂zP

dSP = −2(1 − zQ)

∫ 2π

0
dθP

∫ ∞

0

rP drP

[r2
P − 2rP CT + DT ]3/2

, (A1)

in which it is convenient temporarily to define the auxiliary functions

CT = rQ cos(θP − θQ), DT = r2
Q + (1 − zQ)2. (A2)

The inner integral in Equation (A1) can be evaluated in closed form, and after a little
algebra the result is found to be

�
z=1

∂G

∂zP

dSP = −2(1 − zQ)

∫ 2π

0
dθP

CT + √
DT

DT − C2
T

. (A3)

The intermediate functions CT and DT are now replaced in Equation (A3) by their definitions
from (A2). It is possible also to remove the quantity θQ from the integral, since the integrand
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is a periodic function and it is integrated over a complete period. Equation (A3) can now be
expressed in the form

�
z=1

∂G

∂zP

dSP = −2B

∫ 2π

0

A cos θ + C

A2 sin2 θ + B2
dθ, (A4)

in which we have defined

A = rQ, B = 1 − zQ, C =
√

A2 + B2. (A5)

The integral in Equation (A4) can be evaluated using the residue theorem. The calculation is
straightforward, and after some algebra, Equation (A4) yields

�
z=1

∂G

∂zP

dSP = −2B
2πC

B
√

A2 + B2
.

When the quantities A, B and C are eliminated using Equation (A5), the result in Equa-
tion (5.8) in the text follows.
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